
Mean square displacement for Brownian motion under a square-well potential and non-

Einstein behaviour

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 6525

(http://iopscience.iop.org/0305-4470/29/20/010)

Download details:

IP Address: 171.66.16.70

The article was downloaded on 02/06/2010 at 04:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 6525–6529. Printed in the UK

Mean square displacement for Brownian motion under a
square-well potential and non-Einstein behaviour
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Meguro-ku, Tokyo 153, Japan

Received 10 June 1996, in final form 5 July 1996

Abstract. We have obtained the mean square displacement for Brownian motion of particles
in a fluid under a square-well potential. It is shown that for a deep well, there are short- and
long-time regimes where the mean square displacement is proportional to time as well as a
long intermediate transition stage. Even for a very mild case where the ratioA of the potential
height to the thermal energy is 3 and its width is 5, we need timet of 1010/D to recover
Einstein’s relation, which is unpractically too long whereD is diffusion coefficient. In the short
time regime where an escape process from the well dominates the considerably slow dynamics,
the mean square displacement is approximately given by 4e−ADt with the exponential factor
appearing in theory of chemical reactions.

In investigating the dynamic processes of a molecule immersed in liquids, we often require
fundamental knowledge based on results from theory of Brownian motion. Among them,
Einstein’s relation on the mean square displacement for free motion is important not only for
interpretations of experimental data [1, 2] but also for developments of further sophistication
of theories on irreversible statistical mechanics [3, 4]. For two particles interacting with each
other through a potential which is only a function of the relative distance, it is well known
that the motion can be reduced to that for the centre of mass which undergoes free motion
and the motion for the relative distance which can be treated as a one-body system. In this
paper, to find how an attractive interaction may affect the dynamics of Brownian motion
of two particles in a fluid, we introduce a square-well potential of heightV0 with a finite
width u shown in figure 1. We assume the same diffusion coefficientD for motion both
inside and outside the well and calculate the mean square displacement for the case of the
initial position within the well. It will be shown that there exist two time regions where the
mean square displacement is proportional to timet , whose proportionality coefficients are
4e−AD and 2D for the short- and long-time regimes, respectively, in whichA = V0/kBT

is the ratio of the potential depthV0 and the thermal energykBT in which kB and T are
the Boltzmann constant and the absolute temperature. It is found that even for a mild case
of A = 3 andu = 5 the time required for the latter Einstein relation is 1010/D, which is
extremely slow. To indicate this long-time behaviour for an arbitrary potential, we carried
out numerical calculations for the Lennard–Jones potential and found the same conclusion.

Brownian motion under a square-well potential in figure 1 can be regarded as free
motion except for two points atx = 0 where the potential is infinitively large so that there
will be no flux and atx = u where the flux is continuous, while the probability densities
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Figure 1. Square-well potential. The height and width of the potential are represented byV0

andu, respectively.

ρ(u−, t) andρ(u+, t) are discontinuous just as the potential;ρ(u−, t) = eAρ(u+, t). In
view of these boundary conditions, it was shown [6] thatA in [5] should be replaced by
eA − 1, which leads to the following expression for Laplace transform of〈x2(t)〉,

L[〈x2(t)〉] =
∫ ∞

0
〈x2(t)〉e−λ2t dt

= x2
0

λ2
+ 2

λ4
− 2u(eA − 1)

coshλx0

λ3D(λ)
(1)

where

D(λ) = coshλu + eA sinhλu (2)

in which x0 is the initial position of the particle att = 0. We have set the diffusion
coefficient D = 1 for brevity here. To recover the full expressions withD, we should
replacet in this paper withDt . For a relatively large value ofA, and 06 x0 6 u, we
can naturally imagine that the initial stage of the dynamics is to make the distribution of
the particles uniformly in the well. The initial part of the long-time escaping dynamics of
particles from the well becomes effective only after this process. Hence, instead of starting
with (1) with x0, we find it convenient to treat the case wherex0 is distributed uniformly
within the well and to examine the dynamics of the escape. By taking the average with
respect tox0, we write

L[8(t)] = L

[
1

u

∫ u

0
〈x2(t)〉 dx0

]
= u2

3λ2
+ 2eλu

λ4D(λ)
(3)

which leads to

L[8(t)] = u2

3λ2
+ 4

(eA + 1)λ4

[
1 +

∞∑
n=1

Bne−2nuλ

]
(4)

where

B = eA + 1

eA − 1
.

By taking the inverse Laplace transform of (4), we readily obtain

8(t) = u2

3
+ 4t

eA + 1
+ 4

eA + 1

∞∑
n=1

Bn

[
(t + 2n2u2)erfc

(
nu√

t

)
− 2nu

√
t

π
e−n2u2/t

]
. (5)
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It immediately follows that for the initial stage,

8(t) ≈ u2

3
+ 4t

eA + 1
(6)

whereas for the long-time approximation

8(t) ≈ u2

3
+ 2t − 4u(eA − 1)

√
t

π
+ 2u2eA(eA − 1) − 2

3

u3(eA − 1)(3e2A − 1)√
πt

+ 1

15

u5(eA − 1)(15e4A − 15e2A + 2)

t
√

πt
− O(t−5/2). (7)

It is clear that both (6) and (7) lead to Einstein’s relation,8(t) = u2/3 + 2t in the special
case ofA = 0. And it should be noted that both short- and long-time approximations
contain terms proportional tot , originating from the diffusion process of the escape from
the well and final free Brownian motion long after the escape, respectively. The latter
process corresponds to Einstein’s relation. We must remember that in the limit ofA → ∞
both expressions in (1) and (3) should lead tou2/3, which corresponds to the uniform
distribution within the well. Obviously (6) agrees with this, whereas (7) does not, which
indicates that we cannot recover a proper limit from the long time expansion in (7). It
should be noted that the escape process in (6) takes the exponential factor exp(−A) for
a large value ofA that appears in theory of chemical reactions and this term leads to the
significantly slow dynamics, being independent ofu. Whereas in equation (7), the long
dynamics is characterized by a function of exp(A). Now it becomes clear that there must
be an intermediate transition region where the mean square displacement,8(t) − u2/3
changes from 4t/(eA + 1) to 2t . To check these and what time-scale the Einstein relation
dominates the dynamics, we have plotted [8(t) − u2/3]/2t obtained from the first three
terms on the right-hand side of equation (7) and represented by the broken curve against
log10 t in figure 2 for a very weak condition ofA = 3 and u = 5. The agreement to
Einstein’s relation is indicated by fitting to the top horizontal line. Even with this small
value ofA, we see that the Einstein relation will show up only after an extremely long time
of 1010. It is obvious that larger values ofA andu than the above shift the time-scale to
the longer side. In figure 2, we also plotted [8(t) − u2/3]/2t obtained numerically (the
full curve). We see a good agreement of the full curve with the broken one at long time.
In the short time scale, we see the agreement with (6), which requires to fit to the bottom
horizontal line. To confirm that this kind of profile is not only for the square-well potential,
but also for an arbitrary interparticle potential, we carried out numerical analyses, obtained
the mean square displacement of particles in three-dimensional space under the following
Lennard–Jones potential and plotted [〈r2(t)〉 − r2

0〉]/6t in figure 3

V (r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

(8)

wherer is the interparticle distance in three dimension. In calculating the result in figure 3,
we have set(4ε/kBT ) = 50, σ = 1, r0 = 1.15 and we imposed the infinitively high
potential atr = 1. The full curve is obtained numerically and crosses are theoretical values
whose details will be published elsewhere.

A new implication from the present work is to determine the potential barrierV0 from the
short-time behaviour of the mean square displacement through (6) by the light scattering
experiments, for example [1, 2]. We have assumed that the potential is rigid during the
whole time scale. However, it is interesting to introduce a fluctuating potential with respect
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Figure 2. Plots of [8(t) − u2/3]/2t versus log10 t for A = 3, andu = 5. The broken and full
curves are obtained using the first three terms in (7) and numerical calculations, respectively.
The top and bottom horizontal lines are for Einstein’s relation and (6), respectively.

Figure 3. Plot of [〈r2(t)〉 − r2
0〉]/6t for three-dimensional spherically symmetric Brownian

motion under the Lennard–Jones potential versus log10 t .

to time or space and to find the dynamics of the motion as a further modification of the
present work.

Finally, it would be worthwhile describing how we obtained numerical results in figure 2.
The following Smoluchowski equation for the probability densityρ(x, t):

∂ρ(x, t)

∂t
= ∂2ρ(x, t)

∂2x
(9)

can be turned into the following difference equations based on the Crank–Nicolson implicit
method [7]:

qρi−1,j+1 − (1 + 2q)ρi,j+1 + qρi+1,j+1 = −qρi−1,j − (1 − 2q)ρi,j − qρi+1,j (10)

whereq = 1t/2(1x)2, t = j1t and x = i1x. We introduced the perfectly reflecting
boundary conditions atx = 0 andx = L so that

ρ0,j+1 = ρ1,j+1 ρN+1,j+1 = ρN,j+1

whereN is the end point atx = L = N1x which is taken to be so large that it no longer
affects the dynamics. We omit describing the boundary conditions forρi,j , because they
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are the same forρi,j+1. If we represent the position of the right well atx = u = M1x by
M, the potential must leap abruptly fromM to M + 1. Since the number of particles in
0 6 x 6 L must be conserved, it follows that

ρ−
M+1,j+1 = ρM+1,j+1 + (1 − e−A)ρM,j+1

ρ+
M,j+1 = e−AρM,j+1.

These relations are also valid forj , whereρ−
M+1,j+1 andρ+

M,j+1 are fori = M andi = M+1
in equation (10) in which

qρM−1,j+1 − (1 + 2q)ρM,j+1 + qρ−
M+1,j+1 = −qρM−1,j − (1 − 2q)ρM,j − qρ−

M+1,j

qρ+
M,j+1 − (1 + 2q)ρM+1,j+1 + qρM+2,j+1 = −qρ+

M,j − (1 − 2q)ρM+1,j − qρM+2,j

respectively. These four boundary conditions together with (10) enable us to calculate
ρ(x, t) numerically.

Finally let us conclude this paper by stating that there are mainly three stages in the
dynamics for the deep well. The very initial stage whose dynamics is governed by the
escape process from the potential similar to that for chemical reactions as given by (6)
then there is a long intermediate step partially described by (7). Only at very long last,
the dynamics is taken over by Einstein’s relation. But we sometimes have to wait for an
unreasonably long time as seen in figure 2.
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